how to find absolute extrema
2.4 Absolute Extrema
In this section, we learn how to find the largest and smallest \\(y\\) values (_absolute extrema_) on the graph. + We examine only the critical values and the endpoints of the interval.
Idea
Definition: Absolute Extrema
Suppose \( f \) is a function on the interval \( [a,b] \). Then,
\( \bullet \) The \( y \)-value \( f(c) \) is an \( \bf{\text{absolute maximum}} \) if \( f(c) \geq f(x) \) on \( [a,b] \).
\( \bullet \) The \( y \)-value \( f(c) \) is an \( \bf{\text{absolute minimum}} \) if \( f(c) \leq f(x) \) on \( [a,b] \).
Procedure
Maximum-Minimum Principle
Suppose that \( f \) is a continuous function over the closed interval \( [a,b] \). To find the absolute extrema (maxima and minima) over \( [a,b] \), do the following:
\( (a) \) Find \(f'(x)\)
\( (b) \) Then, determine all critical values of \( f \) in \( (a,b) \), i.e. all \(c\) such that
\begin{align} f'(c) &= 0 \quad \text{or} \quad f'(c) = DNE \end{align}
\( (c) \) List all values from the previous step and the endpoints:
\begin{align} a, c_1, c_2, \dots, c_n, b \end{align}
\( (d) \) Evaluate \( f(x) \) for each value in step \( (c) \):
\begin{align} f(a), f(c_1), f(c_2), \dots, f(c_n), f(b) \end{align}
The largest of these values is the absolute maximum of \(f\) on \( [a,b] \), and the smallest of these values is the minimum.
Examples
Example 1
Find the absolute maximum and minimum for
\begin{align} f(x) &= -x^3 -3x^2 + 9x + 12 \quad \text{over} \; \; [-4,2] \end{align}
\( (a) \) Find \( f'(x) \)
\begin{align} f'(x) &= -3x^2 -6x +9 \end{align}
\( (b) \) Determine all critical values:
From previous classes, we have: \( x=-3, 1 \).
\( (c) \) Points to test:
\begin{align} -4, -3, 1, 2 \end{align}
\( (d) \) Evaluate the original function at points in previous step:
x-value | \(f\) |
---|---|
-4 | \(f(-4) = -8\) |
-3 | \(f(-3) = -15\) |
1 | \(f(1) = 17\) |
2 | \(f(2) = 10\) |
From the table we observe:
- The absolute max is \(17\) and it occurs at \(x=1\)
- The absolute min is \(-15\) and it occurs at \(x=-3\)
Example 2
Find the absolute max and min for
\begin{align} f(x) &= x + \frac{4}{x} \quad \text{on} \; [-8,-1] \end{align}
Solution:
\( (a) \) Find \( f'(x) \)
\begin{align} f'(x) &= 1- \frac{4}{x^2} \end{align}
\( (b) \) Determine all critical values:
Solve \( f'(x) =0 \):
\begin{align} f'(x) = 1- \frac{4}{x^2} &= 0 \\ 1 &= \frac{4}{x^2} \\ x^2 &= 4 \\ x& = \pm 2 \end{align}
In addition, \( f'(x) \) is not defined at \( x=0 \) but neither is the original function, so it is not a critical value.
\( (c) \) The interval of consideration is \( [-8,-1] \), and any critical values outside this interval are ignored. Here, we ignore \( x=2 \).
Points to test:
\begin{align} -8, -2, -1
\end{align}
\( (d) \) Evaluate the original function at points in previous step:
x-value | \(f\) original func. |
---|---|
-8 | \(f(-8) = -8.5\) |
-2 | \(f(-2) = -4\) |
-1 | \(f(-1) = -5\) |
From the table we observe:
- The absolute max is \(-4\) and it occurs at \(x=-2\)
- The absolute min is \(-8.5\) and it occurs at \(x=-8\)
how to find absolute extrema
Source: http://www.math.iup.edu/~clamb/class/math115/2.4-absolute-extrema/
Posted by: redfieldfoublinges.blogspot.com
0 Response to "how to find absolute extrema"
Post a Comment